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Random Alpha PageRank
Paul G. Constantine and David F. Gleich

Abstract. We suggest a revision to the PageRank random surfer model that considers
the influence of a population of random surfers on the PageRank vector. In the revised
model, each member of the population has its own teleportation parameter chosen
from a probability distribution, and consequently, the ranking vector is random. We
propose three algorithms for computing the statistics of the random ranking vector
based respectively on (i) random sampling, (ii) paths along the links of the underlying
graph, and (iii) quadrature formulas. We find that the expectation of the random
ranking vector produces similar rankings to its deterministic analogue, but the standard
deviation gives uncorrelated information (under a Kendall-tau metric) with myriad
potential uses. We examine applications of this model to web spam.

1. Introduction

The PageRank modification for a Markov chain transforms any input Markov
chain into an irreducible, aperiodic chain with a unique stationary distribution.
Elements of this unique stationary distribution give the importance of the nodes
in the state space of the input Markov chain. Brin and Page proposed the
PageRank method to measure the global importance of web pages under the
behavior of a random surfer, which can be interpreted as a Markov chain on the
web graph [Page et al. 99]. We focus on this random surfer model and show that
it contains a slight oversight when interpreted over a set of “surfers.”

Let us begin by revisiting the putative random surfer. With probability α, the
surfer follows the links of a web page uniformly at random. With probability
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1 − α, the surfer jumps to a different page according to a given probability dis-
tribution over web pages. (For the moment, we are assuming that dangling-node
pages—those with no links—have been addressed in some fashion; see Section 2.)

Thus, the PageRank value for a web graph depends on two quantities: the
parameter α and the given distribution over the pages. The effect of both of these
quantities on the mathematics of the PageRank vector are fairly well understood
[Langville and Meyer 06, Boldi et al. 09], but the choice of α is not well justified
in the context of the random surfer model. Most existing PageRank calculations
use a single value of α, and two choices stand out in the literature for web
search: α = 0.5 [Avrachenkov et al. 07, Chen et al. 07] and α = 0.85 [Page et
al. 99, Najork et al. 07]. Some other choices are discussed in Section 4.1 as well.

Rather than trying and testing arbitrary values of α, suppose we pick α to
make the random surfer model accurate. Because α ought to be the probability
of following a link on a web page, let us make it so.

Empirically measured browsing patterns on the web show that individual
users, unsurprisingly, have different browsing behaviors [Huberman et al. 98,
White and Drucker 07]. We also confirm this result in a recent paper [Gleich et
al. 10a]. If we assume that all users have their own probability αi of teleporting
(i.e., all users follow links with different probabilities), then the random surfer
model suggests that we should set α = 1

N

∑N
i=1 αi, i.e., the mean of these values.

More generally, if A is a random variable with a density function encoding
the distribution of teleportation parameters among multiple (perhaps infinite)
surfers, then the PageRank model suggests α = E [A], where E [·] is the expec-
tation operator.

The flaw in PageRank is that using α = E [A] still does not yield a Page-
Rank vector that reflects all the surfer values αi. We will justify this statement
shortly; intuitively it arises because a single value of α condenses all surfers into
a single über-surfer. Instead, we propose to give a small vote to the PageRank
vector x(αi) corresponding to each random surfer and create a global metric
that amalgamates this information. In other words, we want to examine the
random surfer model with “α = A,” where A is a random variable modeling
users’ individual behaviors. Figure 1 gives a pictorial view of this change. If A is
a random variable, then the PageRank vector x(A) is a random vector, and we
can synthesize a new ranking measure from its statistics. We call this measure
Random Alpha PageRank (RAPr); it is pronounced “wrapper.”

In earlier work [Constantine and Gleich 07], we introduced a means of han-
dling multiple surfers in PageRank. This manuscript extends those ideas by
clarifying the presentation, expanding the computational algorithms, and com-
piling additional results. In particular, the previous paper used the polynomial
chaos approach to investigate the behavior of multiple surfers algorithmically.
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→ x(E [A])

(a) The PageRank Model

· · ·

→ E [x(A)]

(b) Our random α PageRank model

Figure 1. The PageRank model assumes a single random surfer representing an
expected user. Our model assumes that each surfer is unique with a different
value of α, which we represent as a random variable A. If the function x(·) gives
the PageRank vector for a deterministic or random α or A, respectively, we then
compute the expected PageRank given the distribution for A.

In [Constantine et al., to appear], we showed that the polynomial chaos and
quadrature methods are equivalent in the case of PageRank. The presentation
here eliminates the discussion of polynomial chaos beyond this paragraph.

In what follows, we first present a short review of PageRank along with the
notation we adopt in this paper (Section 2). We continue the discussion by
outlining our high-level vision for how RAPr might be useful in a variety of
situations (Section 3). Relationships between RAPr and other literature are
discussed next (Section 4). In the following section, we present a theoretical
comparison between PageRank and RAPr and how RAPr generalizes a few re-
sults about PageRank (Section 5). The following two sections present algorithms
to approximate two important quantities in the RAPr model (Section 6) and
analyze the convergence of each of these algorithms both theoretically and em-
pirically (Section 7). Finally, we present a few applications of RAPr and show
that it helps to improve a webspam classifier (Section 9).

All of our experimental code, which we provide to allow others to validate and
repeat our experiments, is available online.1

1Available at http://stanford.edu/∼dgleich/publications/2009/rapr.
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In the exposition that follows, we also present our algorithms with Matlab

code instead of traditional pseudocode. While producing compact code intro-
duces a few small restrictions and inefficiencies in the implementation, we believe
that the advantage of cut-and-pastability of these implementations is consider-
able.

2. PageRank and Notation

In this section, we detail our choices for the PageRank model employed in the
remainder of the paper. Given the row-oriented adjacency matrix of a web graph

Wi,j =

{
1 page i links to page j,
0 otherwise,

let P be a column-stochastic transition matrix for W,

Pj,i = probability of transitioning from node i to node j,

so that eT P = eT . (Please note that we have transposed P from the row-oriented
description of W.) This transformation assumes that dangling nodes have been
corrected in some manner.

For the experiments in this paper, we use the strongly preferential PageRank
model [Boldi et al. 07], although we note that the analysis and algorithms apply
to any column-stochastic matrix P. We discuss only the strongly preferential
framework because it seems to be the most common. Finally, let (1 − α) be the
teleportation probability and v the teleportation or personalization distribution.
The PageRank model requires 0 ≤ α ≤ 1 and vi ≥ 0. Under these definitions,
then, the PageRank vector x(α) satisfies the linear system [Arasu et al. 02, Del
Corso et al. 05]

(I− αP)x(α) = (1 − α)v. (2.1)

When α = 1, then we define x(1) using the limiting value [Serra-Capizzano 05].
We summarize a subset of our notation for this paper, which we use con-

sistently unless otherwise noted, in Table 1. All vectors are column oriented.
Matrices and vectors are denoted by bold letters. Random variables are denoted
by uppercase, nonsubscripted, roman letters. Only A, the random α, is used
frequently. We use only the 1-norm, so ‖x‖ = ‖x‖1 throughout.

Given a continuous random variable A with a continuous density function
ρ(x) on the interval [l, r] (such variables are quite special, but they suffice for
this paper), we define the expectation of A:

E [A] =
∫ r

l

ρ(x) dx.
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Symbol Meaning

A a random variable for the teleportation parameter

α a deterministic value for the teleporatation parameter

Beta(a, b, [l, r]) the beta distribution with parameters a, b over [l, r]

Beta(·, ·) the beta function of two parameters

E [·] the expectation operator

• the Hadamard (or elementwise) product

P a column-stochastic matrix

‖ · ‖ the one-norm (‖ · ‖1)

Std [·] the standard deviation operator

v the teleportation distribution vector for PageRank

x(A) solution to the RAPr model

x(α) the PageRank vector for teleportation parameter α

xi(·) the ith element of x(·)

Table 1. Throughout this paper, we maintain the notation that a matrix is
denoted by a bold, uppercase, roman letter; a vector by a bold, lowercase, roman
letter; a random parameter by an uppercase letter; and the elements of a matrix
or vector by nonbolded letters with subscripts.

Evaluating the expectation of a function corresponds to

E [f(A)] =
∫ r

l

f(x)ρ(x) dx.

The standard deviation operator is defined in terms of the expectation operator:

Std [A] =
√

E [(A − E [A])2].

3. Vision

Let us return to the RAPr model and outline our vision for the new model be-
fore proceeding to discuss theoretical properties and algorithms. The PageRank
vector x(E [A]) does not incorporate the surfing behavior of all users; we propose
to use E [x(A)] instead. Because the PageRank vector is a nonlinear function of
α, we have E [x(A)] �= x(E [A]), and Section 5 gives a formal counterexample.
For reasonable distributions of A, however, we expect

x(E [A]) ≈ E [x(A)] .

We explore this behavior in Section 9. Despite this similarity, moving from the
deterministic x(α) to the random x(A) yields more information. For a given
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(b) Density functions

Figure 2. (a) A simple web graph and (b) approximate probability density func-
tions of the corresponding PageRank random variables. This shows that pages 5
and 6 have the highest variance (widest density function). These pages are traps
from which the random surfer cannot leave. In this plot, A ∼ Beta(2, 16, [0, 1]).
In (b), the dark gray circle stems show the PageRank value for α = E [A] = 0.85,
whereas the light gray star stems show the expectation according to the Page-
Rank density.

page, its “PageRank” is now a random variable. Figure 2 shows the probability
density functions for the PageRank random variables on a small graph.

We can use the standard deviation of the random variables to help “quantify
the uncertainty” in the PageRank value. The standard deviation is a measure of
the variability in the PageRank induced by the variability in A. For the graph
in Figure 2, the standard deviation vector is

Std [x(A)] =
[

0.021 0.020 0.026 0.023 0.041 0.049
]T

.

This vector shows that x5 and x6 have the highest standard deviation. In a
traditional PageRank context, these pages both are in a sink-component and
accumulate rank from the largest connected component (x1, x2, x3, and x4).

We anticipate many problem-dependent uses for RAPr-derived quantities. For
example, we outline the use of correlation coefficients in Section 4.5. Our exper-
iments show that the standard deviation vector is uncorrelated (in a Kendall-τ
sense) with the PageRank vector itself. (Kendall’s τ measures the difference in
concordant and discordant pairs between two lists relative to an identical order-
ing and an inverted ordering.) Because pages with a high standard deviation
have highly variable PageRank values, the standard deviation vector could be
an important input to a machine learning framework for web search or web page
categorization. We evaluate this use in Section 9.4.



�

�

“imvol6” — 2010/9/22 — 15:14 — page 195 — #7
�

�

�

�

�

�

Constantine and Gleich: Random Alpha PageRank 195

More generally, the PageRank model has become a key tool for network and
graph analysis. It has been used to find graph cuts [Andersen et al. 06], infer
missing values on a partially labeled graph [Zhou et al. 05], find interesting genes
[Morrison et al. 05], and help match graph structures in protein networks [Singh
et al. 07]. In all of these cases, the random surfer model does not directly apply.
Each paper picks a particular value for α and computes a PageRank vector
from that value. With RAPr, each case will have a natural random variable.
For most, it may be a uniform distribution. Rather than reporting just a single
number, the algorithms could use the standard deviation as a confidence measure
representing uncertainty or global sensitivity in the resulting PageRank vector.
The sensitivity using the standard deviation accounts for fluctuations in the
function over a wider interval than the derivative (which we discuss further in
Section 4.4).

4. Related Work

Our ideas have strong relationships with a few other classes of literature. Before
delving into the details of the RAPr model, we would like to discuss these
relationships.

4.1. Teleportation Parameters in the Literature

Algorithmic papers on PageRank tend to investigate the behavior of PageRank
algorithms for multiple values of α or values of α larger than 0.85 [Kamvar et
al. 03, Golub and Greif 06], whereas evaluations of the PageRank vector tend to
use the canonical value α = 0.85 [Najork et al. 07].

Katz used α = 0.5 in a model related to PageRank [Katz 53]. Katz’s model
was (I − αWT )k = αWT e for an adjacency matrix W. More recently, two
papers suggested α = 0.5 for PageRank. The first paper [Avrachenkov et al. 07]
argues that α = 0.5 is the right choice in using graph-theoretic techniques to
examine the mass of PageRank in the largest strong component of the web
graph. The second paper [Chen et al. 07] applies the random surfer model to a
graph of literature citations. The authors claim, based on co-citation analysis,
that literature networks contain very short citation paths of average length 2.
This analysis then suggests α = 0.5.

4.2. Usage Logs and Behavior Analysis

Huberman et al. studied the behavior of web surfers even before the original
paper on PageRank, and they suggested a Markov model for surfing behavior



�

�

“imvol6” — 2010/9/22 — 15:14 — page 196 — #8
�

�

�

�

�

�

196 Internet Mathematics

[Huberman et al. 98]. In contrast with the Brin and Page random surfer, the
authors empirically measured the probability that surfers follow paths of length �

and then computed
n� = f�P�n0

for the expected number of surfers on each page after � transitions. They found
that f�, the probability of following a path of length �, is approximately an
inverse Gaussian.

This model is strongly related to the path-damping models discussed next and
in Section 5.3. An earlier study showed that the average path length of users
visiting a site decayed quickly, but did not match the decay to a distribution
[Catledge and Pitkow 95]. Both of these studies focused on the browsing behavior
at a single site and not across the web in general. Subsequently, many papers
have suggested measuring surfer behavior from usage logs to improve local site
search [Wang 02, Xue et al. 03, Farahat et al. 06].

In the context of web search, a recent study identified two types of surfers:
navigators and explorers [White and Drucker 07]. Navigators proceed roughly
linearly, whereas explorers frequently branch their browsing patterns and revisit
previous pages before going to new links. The former behavior corresponds to a
larger value of α than the latter.

A recent patent from Yahoo! [Berkin et al. 08] describes a modification of the
PageRank equations to build a “user-sensitive PageRank” system by incorpo-
rating observed page transitions and user segment modeling. The key idea in
the patent is to modify the Markov chain transition probabilities to give higher
weight to transitions observed and change the teleportation vector in light of
the start points of observed transitions. These weights depend on a user seg-
ment. They also recognize the inaccuracy of a single teleportation coefficient,
but model separate teleportation coefficients to and from each page on the web.
Our approach differs by modeling a random Markov chain and its associated ran-
dom stationary distribution. Researchers at Microsoft proposed a related system
called BrowseRank that builds a continuous-time Markov chain from observed
user transitions and holding times [Liu et al. 08].

We recently completed an investigation of empirical values of α [Gleich et
al. 10a] and found that user values of α approximate a beta density with mean
between 0.3 and 0.7 depending on the website.

4.3. Path Damping

While working on the mathematics of RAPr, we discovered a strong relation-
ship with path-damping interpretations of the PageRank vector. Path-damping
models weight each path of length � in the graph with a set of coefficients that



�

�

“imvol6” — 2010/9/23 — 11:01 — page 197 — #9
�

�

�

�

�

�

Constantine and Gleich: Random Alpha PageRank 197

sum to 1. Mathematically, they compute a ranking vector

r =
∞∑

�=0

ω(�)P�v,

where
∑∞

�=0 ω(�) = 1 [Boldi 05, Baeza-Yates et al. 06]. As we show in Section 5.3,
the value E [x(A)] corresponds to a particular choice of ω(�).

4.4. The Derivative

In the vision section, we briefly alluded to the standard deviation as a sensitiv-
ity measure. A more local sensitivity measure for PageRank is the derivative
with respect to α [Boldi et al. 05, Golub and Greif 06]. Whereas the derivative
evaluates the sensitivity to small changes in α around a set value, the standard
deviation reflects the stability of the PageRank value over the range of values
for the random variable A. Thus, the derivative captures local sensitivity infor-
mation about the PageRank function of α, and the standard deviation captures
a more global sensitivity.

4.5. Spam Ranking

Zhang et al. use the PageRank vector at different values of α to infer spam
pages [Zhang et al. 04]. Spam pages, the authors argue, ought to be sensitive
to changes in α. Their goal is to trap the surfer and boost their rank. Thus,
changing α will reveal them. After computing PageRank at a few α’s, the authors
measure the correlation between the function 1/(1−α) and the PageRank value
(for a page) on their small set of α’s. Pages with high correlation are more
likely to be spam pages. This idea is similar in practice to the Gauss quadrature
algorithm of Section 6.4 when used to compute correlation coefficients between
RAPr values. In RAPr, the random variable A has an associated quadrature
rule for its expectation that specifies the α’s at which to compute the PageRank
vector. RAPr is also more general. It is not tied to just computing a correlation
against a particular function but produces a correlation score between any pages.
Measuring the correlation coefficient against known spam pages is yet another
possible use of the RAPr model.

5. The Random Alpha PageRank Model

So far, we have discussed our vision for RAPr and the body of literature that
surrounds our ideas. We now formally state and analyze RAPr.
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Given a bounded random variable A distributed within the interval [0, 1], the
random alpha PageRank is the vector x(A) that satisfies

(I − AP)x(A) = (1 − A)v, (5.1)

where I, P, and v are as in (2.1). When we use this model, we often look at

E [x(A)] and Std [x(A)] .

We address some theoretical implications of this model in the next few sections,
and we defer the discussion of computation until Section 6.

From this definition, we can immediately show that our model generalizes the
TotalRank algorithm [Boldi 05], which produces a vector t defined as

t =
∫ 1

0

x(α) dα.

If A ∼ U [0, 1] in RAPr (i.e., A is distributed according to a uniform [0, 1]
density), then

E [x(A)] =
∫ 1

0

x(α) dα = t.

A purported benefit of the TotalRank algorithm is that it eliminates picking an α

in a PageRank computation. When compared to RAPr, however, it corresponds
to a particular choice of the random variable A.

It behooves us to check that the expectation of RAPr is well defined. One
concern is that E [x(A)] =

∫ 1

0 x(α)ρ(α) dα touches the value x(1). Looking only
at the linear system (I − αP)x = (1 − α)v, we would conclude that x(1) may
not be unique because the matrix is singular when α = 1. If x(1) is not defined,
then the expectation of RAPr will not exist. In fact, there is no difficulty for our
formulation of PageRank because α = 1 corresponds to a removable singularity
of the function. Thus, we can extend the definition of x to α = 1 with the
limiting value.

5.1. Choice of Distribution

The first order of business for RAPr is to choose the distribution of A. While
choosing a distribution seems more difficult than picking a single value α, having
the right data makes it easy. The information for the empirical distribution of
A is present in the logs from the surfer behavior studies discussed in Section 4.2.
This point is illustrated in [Gleich et al. 10a], where we take browsing logs and
compute a distribution for α.

Picking A based on browsing behavior, however, is yet another choice. It seems
correct and natural for the random surfer derivation of PageRank. When the
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PageRank or RAPr values are used in an application, the metrics of the appli-
cation should drive the choice of α or A. We return to this point in Section 9.4.

We assume that A has a continuous distribution over [l, r] with 0 ≤ l < r ≤ 1.
Two distributions with bounded, continuous support are the uniform distribution
and the beta distribution. In fact, the uniform distribution is a special case of the
beta distribution, and consequently, our “default” choice of A is a beta random
variable with distribution parameters a and b, and support [l, r]. To denote this,
we write A ∼ Beta(a, b, [l, r]). The probability density function for this random
variable is

ρ(x) =
1

(r − l)a+b+1

(x − l)b(r − x)a

Beta(a + 1, b + 1)
. (5.2)

It reduces to a uniform distribution when a = b = 0. Later, we will derive our
algorithms in the most general settings possible, but all computations are done
with some version of the beta distribution. We find that empirical distributions
of α are strikingly close to a beta with properly fitted parameters [Gleich et
al. 10a].

5.2. Theoretical Properties

We continue to discuss the RAPr model by proving a few results that show how
RAPr generalizes PageRank. All of the following theory reduces to known re-
sults about PageRank when A is a constant. We begin to discuss the theoretical
properties of RAPr by computing a more tractable expression for the expecta-
tion of our random PageRanks. In the following theorems, we always assume
that A is a beta random variable. While this assumption can be relaxed to a
broader class for the results, it suffices for this paper.

Theorem 5.1. If A ∼ Beta(a, b, [l, r]) with 0 ≤ l < r ≤ 1, then

E [x(A)] =
∞∑

�=0

E
[
A� − A�+1

]
P�v. (5.3)

Proof. From (5.1) we have

x(A) = (1 − A)(I − AP)−1v.

Because the spectral radius ρ(AP) is less than 1 for any value of A in [0, 1), we
can expand (I − AP)−1 with its Neumann series [Meyer 00, p. 618]:

x(A) = (1 − A)
∞∑

n=0

AnPnv.
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Taking the expectation and rearranging gives

E [x(A)] = E

[ ∞∑
n=0

(An − An+1)Pnv

]
.

To interchange the expectation and sum, note that 0 ≤ AnPnv ≤ 1 for all
n. Because the summands are nonnegative, (1 − A)An ≥ 0, Fubini’s theorem
justifies this interchange.

The previous theorem also holds when A is a constant between 0 and 1. Using
this theorem, we can formally justify the claim that the expectation of RAPr
is different from the PageRank vector computed with α = E [A]. The following
pedagogic example restricts the claim to the case in which A ∼ Beta(0, 0, [0, 1])
(A is drawn from a uniform [0, 1] distribution). Such a restriction allows us to
use the expressions for the moments of A and compute the infinite sums exactly.
Note that

∑∞
n=0 E

[
An − An+1

]
= 1 because the sums telescope.

Example 5.2. Set P =
[

0 0 0
1/2 0 0
1/2 1 1

]
, v = [ 1/3 1/3 1/3 ]T . Then

P0v = v, P1v =
[
0 1/6 5/6

]T
, Pnv =

[
0 0 1

]T
, n ≥ 2.

To apply Theorem 5.1, we need E [An]. If A ∼ Beta(0, 0, [0, 1]), then A is uniform
over [0, 1] and E [An] = 1

n+1 . Finally,

E [x(A)] =
1
2
v +

1
2
[
0 1/6 5/6

]T +
∞∑

n=2

(
1

n + 1
− 1

n + 2

)[
0 0 1

]T
=
[
1/6 7/36 23/36

]T
.

For x(E [A]) = x(1/2), we obtain

x(E [A]) =
1
2
v +

1
4
[
0 1/6 5/6

]T +
∞∑

n=2

(
1
2n

− 1
2n+1

)[
0 0 1

]T
=
[
1/6 5/24 5/8

]T
.

Thus for this example, E [x(A)] �= x(E [A]).

For this case, the RAPr solution satisfies eT
[
1/6 7/36 23/36

]
= 1. This

property is general, and we next show that—like PageRank—the vector E [x(A)]
is always a probability distribution.

Corollary 5.3. If A ∼ Beta(a, b, [l, r]) with 0 ≤ l < r ≤ 1 and probability density
function ρ, then E [xi(A)] ≥ 0 and ‖E [x(A)]‖ = 1.
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0 1

Beta(0,0,0.6,0.9)
Beta(2,16,0,1)
Beta(1,1,0.1,0.9)
Beta(−0.5,−0.5,0.2,0.7)

Figure 3. The four-parameter beta distribution.

Proof. First, E [xi(A)] ≥ 0 because 0 ≤ A ≤ 1 and vi ≥ 0. Then, we have

‖E [x(A)]‖ = eT

∫ 1

0

x(α)ρ(α) dα =
∫ 1

0

eT x(α)ρ(α) dα = 1,

because eT x = 1 for each α and
∫ 1

0
ρ(α) dα = 1.

Finally, we show that for a certain class of pages, the expectation of RAPr is
equal to that of PageRank with α = E [A].

Theorem 5.4. Let A ∼ Beta(a, b, [l, r]) with 0 ≤ l < r ≤ 1. If i is the index for a
node with no in-links, then E [xi(A)] = xi(E [A]) and Std [xi(A)] = vi Std [A].

Proof. For a page with no in-links, eT
i Pn = 0, n > 0, where ei is the vector with

a 1 in the ith component. Taking the Neumann series for x(A) gives

xi(A) = eT
i

∞∑
j=0

(Aj − Aj+1)Pjv = eT
i (A0 − A1)v = (1 − A)vi.

Equality of the statistics follows from the linearity of the expectation operator.

While Theorem 5.4 yields one condition in which the expectation is the same
for the random and deterministic models, the result may not be useful. Given
many of the standard corrections for dangling nodes (including the methods used
in this paper, where all dangling nodes link according to v and v = 1/ne), a
graph with any dangling nodes will induce an effective graph in which all nodes
have an in-link.

At this point, we have finished our theoretical survey of the model. In what
follows, we present one example of how these theoretical contributions allow us
to interpret the resulting model.
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(a) Beta(0, 0, [0.6, 0.9])
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(d) Beta(−0.5,−0.5, [0.2, 0.7])

Figure 4. The four-parameter beta distribution is quite flexible and exhibits
a range of behaviors as a function of α, β, l, and r. The four density plots
correspond to the graph from Figure 2 with A drawn from the beta distribution
in the caption. When α, β < 0, the resulting PageRank density functions are
bimodal. (PageRank densities are computed with a kernel density estimator
applied to 10,000 random samples.)

5.3. A Path-Damping and Browse Path View

Although we derived the RAPr model by replacing the deterministic coefficient
α with a random variable A, the resulting model has strong connections with
other generalizations of PageRank based on path-damping coefficients [Baeza-
Yates et al. 06]. From the Neumann series for E [x(A)], (5.3), the coefficient on
the jth power of P is the weight placed on a path of length j in the Markov
chain. Because these coefficients tend to decrease as j increases, they “damp”



�

�

“imvol6” — 2010/9/23 — 11:01 — page 203 — #15
�

�

�

�

�

�

Constantine and Gleich: Random Alpha PageRank 203

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

 

 
Beta(0,0,0.6,0.9)
Beta(2,16,0,1)
Beta(1,1,0.1,0.9)
Beta(−0.5,−0.5,0.2,0.7)

(a) E
[
An − An+1

] 10
0

10
1

10
2

10
3

10
4

10
5

10
−15

10
−10

10
−5

10
0

 

 Beta(0,0,0.6,0.9)
Beta(2,16,0,1)
Beta(1,1,0.1,0.9)
Beta(−0.5,−0.5,0.2,0.7)

(b) E
[
An − An+1

]
for larger n

Figure 5. These two figures show the path-damping coefficients for the distribu-
tions from Figure 4 drawn with the same legend.

longer paths in the Markov chain. Figure 5 shows the path-damping coefficients
for the distributions from Figures 3 and 4.

As shown in Figure 5, the path-damping view of RAPr provides interest-
ing information about the impact of different distributions. For details on the
algorithmic implications of the path-damping view, see Section 6.3.

6. Algorithms

We now move to a discussion of how to compute the vectors E [x(A)] and
Std [x(A)]. We define all the algorithms in this section before proceeding to
analyze their behavior and cost in the next section. Specifically, we describe
three methods for approximating the statistics E [x(A)] and Std [x(A)] of the
RAPr model. Each of the following methods has a unique history. In the last
decade, each has been successfully applied to partial differential equation models
with stochastic input parameters; this has transpired in the burgeoning field of
uncertainty quantification, where the goal is to obtain statistics—such as expec-
tation, standard deviation, and approximate density function—of the stochastic
output quantities of interest in models with stochastic inputs. Applications in the
recent literature include fluid dynamics [Mathelin et al. 05], structural mechanics
[Ghanem and Red-Horse 99], and petroleum engineering [Christie et al. 02]. To
the best of our knowledge, ours is the first application to data mining.

In this section, we illustrate all our codes using working Matlab implemen-
tations rather than pseudocodes. The intention is to exhibit a fully working
code, albeit with a few simplifications and inefficiencies dictated by the desire
for a compactly written code. These implementations consume only slightly
more space than a pseudocode description of each algorithm. Furthermore, the
theoretical derivation of each algorithm allows readers to move from our specific
implementations to more general implementations, if necessary.
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6.1. PageRank

One key component of these algorithms is a solver for a deterministic PageRank
problem with α < 1. For this task, we use two solvers: a direct method and an
inner–outer method [Gleich et al. 10b]. Let us explicitly state that the choice
of PageRank solver is arbitrary. In two of our methods, we use any PageRank
solver.

For computational efficiency, all the Matlab programming uses row sub-
stochastic matrices. These matrices are all implicitly corrected in the strongly
preferential sense. We make this choice because it seems to be the most common,
although we note that all the methods can be adapted to the weakly preferential
case.

The direct method uses the “backslash” solve in Matlab. Given a row sub-
stochastic matrix P̄—produced, for example, by a random walk normalization
of a graph—we solve

(I − αP̄T )y = v, x(α) = y/ ‖y‖ .

This procedure solves (2.1) when P = P̄T + vdT and d = e − P̄e [Langville
and Meyer 06]. The inner–outer iteration requires only matrix–vector products,
which makes it a natural choice for a generic algorithm. Using Gauss–Seidel iter-
ations [Arasu et al. 02] or a graph decomposition algorithm [Eiron et al. 04, Ipsen
and Selee 07, Langville and Meyer 06] is typically faster, but these algorithms
require access to the graph structure and its manipulation.

Our code works with a native Matlab sparse matrix structure and does not
perform any manipulations of the graph structure. We note that some of these
standard manipulations may accelerate our codes.

6.2. Monte Carlo

An enticingly straightforward method to compute the expectations, standard
deviations, and density functions of RAPr is to use a Monte Carlo method
(see [Asmussen and Glynn 07] for a modern treatment). To wit, first generate
N realizations of A from a chosen distribution, and then solve each resulting
PageRank problem. With the N different realizations of x(αi), i = 1, . . . , N , we
can compute unbiased estimates for E [x(A)] and Std [x(A)] with the formulas

E [x(A)] ≈ 1
N

N∑
i=1

x(αi) ≡ μ̂x,

Std [x(A)] ≈
√√√√ 1

N − 1

N∑
i=1

(x(αi) − μ̂x)2.
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1 function [ex,stdx] = mcrapr(P,N,ba,bb,bl,br)

2 tol=1e−9; maxterms=500; n=size(P,1); v=1/n;

3 alphas = betarnd(bb+1,ba+1,N,1)*(br−bl) + bl;

4 ex=zeros(n,1); stdx=zeros(n,1);

5 for i=1:N

6 % solve the PageRank system
7 x = inoutpr(P,alphas(i),v,tol,2*ceil(log(tol)/log(alphas(i))));

8 % update the running solution sum and variance sum formulas

9 ex = ex+x; if i>1, stdx = stdx + (1./(i*(i−1))).*(i*x−ex).ˆ2; end

10 end

11 ex = ex./N; stdx=sqrt(stdx./(N−1)); % compute the mean and std

Figure 6. A Monte Carlo code in Matlab to estimate the expectation and stan-
dard deviation of the RAPr model. The function inoutpr solves a strongly
preferential PageRank problem for a row substochastic matrix P and takes pa-
rameters α, v, tolerance, and maximum iteration.

Unfortunately, as with any Monte Carlo method, these estimates converge
as 1/

√
N [Asmussen and Glynn 07], which makes this approach prohibitively

expensive for large graphs such as the web graph. The real advantage of the
Monte Carlo method is its beautiful simplicity. The short code in Figure 6 is
our entire implementation of the Monte Carlo method, including a numerically
stable method to update the running variance computation [Chan et al. 83].

6.3. Path Damping

As discussed in Sections 4.3 and 5.3, path-damping algorithms for PageRank
are not novel. RAPr simply provides a large set of functions that generate the
path-damping coefficients. In this section, we will discuss using these ideas to
compute E [x(A)] and Std [x(A)].

Recall the Neumann series from Theorem 5.1:

E [x(A)] =
∞∑

�=0

E
[
A� − A�+1

]
P�v.

If we truncate this series to a finite value N , then an algorithm for E [x(A)]
immediately follows:

E [x(A)] ≈ x(N) =
N∑

�=0

E
[
A� − A�+1

]
P�v +

(
1 −

N∑
�=0

E
[
A� − A�+1

] )
︸ ︷︷ ︸

=E[AN+1]

PN+1v.

(6.1)
The final term in this summation ensures that eT x(N) = 1 by completing the
telescopic series. The previous equation produces an algorithm because it in-
volves only matrix–vector products with P, assuming that we have some way to
compute the difference in moments. We will return to that point shortly.
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To compute Std [x(A)] using the path-damping equations we compute E
[
x(A)•

x(A)
]

(where • is the elementwise or Hadamard product) and then compute

Std [x(A)] =
√

E [x(A) • x(A)] − (E [x(A)] • E [x(A)]),

where √ is the elementwise square-root function. Based on the Neumann
expansion,

E [x(A) • x(A)] =
∞∑

i=0

∞∑
j=0

E
[
Ai+j − 2Ai+j+1 + Ai+j+2

]
(Piv) • (Pjv).

And again, we truncate this series to a common term in both i and j:

E [x(A) • x(A)] ≈ s(N) =
N∑
i,j

E
[
Ai+j − 2Ai+j+1 + Ai+j+2

]
(Piv) • (Pjv).

Note that we do not apply any correction to the sum to ensure a summation
property of the solution as in the case for E [x(A)].

1 function m=beta moments(N,a,b,l,r)

2 c = l; s = (r−l); m=zeros(N+1,1); % c is the offset, s is the scale

3 uk=1; k=0; sk=1; m(1) = uk; % uk are the Beta(a,b,0,1) moments
4 for i=1:N, k = k+1; uk=s*uk*((b+k)/(a+b+k+1)); m(i+1) = uk; end

5 % form the shifted and scaled moments % m are the Beta(a,b,l,r) moments
6 if c �= 0, for i=1:N, m(i+1:end) = c*m(i:(end−1)) + m((i+1):end); end, end

(a) Moment computation

1 function [ex,stdx] = pdrapr(P,N,a,b,l,r)

2 tol=1e−9; maxterms=500; n=size(P,1); v=1/n;

3 ms = beta moments(2*(maxterms+1),a,b,l,r); % setup the moments

4 i=0; delta=2; ex=zeros(n,1); y = zeros(n,1) + v; s=0; % setup vectors
5 while i<maxterms && ms(i+2)>tol

6 Ptiv=y; ex = ex + (ms(i+1)−ms(i+2))*Ptiv;

7 y = P’*(Ptiv); y = y + (1−norm(y,1)).*v; i=i+1; end % update Pˆi v
8 ex = ex + ms(i+2)*y; % adjust with the last term

9 % compute stdx with same number of terms of sequence
10 nterms=i; ex2=zeros(n,1); Ptiv = zeros(n,1); Ptiv=Ptiv+v; Ptjv=Ptiv;

11 for i=0:nterms, for j=0:nterms

12 ex2 = ex2 + (ms(i+j+1)−2*ms(i+j+2)+ms(i+j+3))*(Ptiv.*Ptjv);

13 y = P’*(Ptjv); Ptjv = y + (1−norm(y,1)).*v;

14 end % now update Ptiv and reset Ptjv
15 y = P’*(Ptiv); Ptiv = y + (1−norm(y,1)).*v; Ptjv(:)=0; Ptjv=Ptjv+v;

16 end % finish by update ex2 to be stdx
17 stdx = sqrt(ex2−ex.ˆ2);

(b) Path-damping computation

Figure 7. The first figure presents a compact algorithm to compute the moments
of a beta distribution. Next, we present our implementation of the path-damping
algorithms using the moments. Just as for the PageRank case, we perform our
computations with P = PT for efficiency.
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Given the moments of the distribution A,

μk(A) = E
[
Ak
]
, 0 ≤ k ≤ 2N + 2,

the previous summation expressions become algorithms. For A ∼ Beta(a, b, [0, 1]),
the values μk are known analytically [Zwillinger et al. 96]:

μ0 = 1, μk =
b + k

a + b + k + 1
μk−1 =

k∏
j=1

b + j

a + b + j + 1
, k ≥ 1. (6.2)

Figure 7 gives a simple implementation of the path-damping algorithms and an
implementation of a code to compute the moments of the general four-parameter
beta density. This latter code, described in Section 11, is based on a dynamic
programming approach.

6.4. Gaussian Quadrature

RAPr has only one random parameter A ∼ Beta(a, b, [l, r]), so we can employ
the one-dimensional interpolation and integration formulas—commonly called
quadrature—to produce highly accurate statistics. In this section we discuss
their application to RAPr.

For a modern reference on Gaussian quadrature, see [Gautschi 02]. In an
N -point quadrature rule, we approximate

∫ r

l

f(x) dw(x) ≈
N∑

i=1

f(zi)wi, (6.3)

where zi are the N nodes or points of a quadrature rule and wi are the corre-
sponding weights. In Gaussian quadrature, these nodes and weights are chosen
to make the integration exact if f is a polynomial of degree less than 2N , and
there are efficient (O(N log N) or O(N2)) and stable algorithms to compute
these rules [Glaser et al. 07, Golub and Welsch 69]. Note that the quadrature
rule changes if the integration endpoints change, or if the weight function w

changes.
With the points and weights of the Gaussian quadrature formula, we first solve

N deterministic PageRank problems

(I − ziP)xi = (1 − zi)v (6.4)

using methods described in Section 6.1. Then we can compute statistics of RAPr
with the quadrature formulas
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1 function [ex,stdx] = gqrapr(P,N,a,b,l,r)

2 % first run these commands to get the OPQ codes
3 % urlwrite(’http://www.cs.purdue.edu/archives/2002/wxg/codes/gauss.m’,’gauss.m’)

4 % urlwrite(’http://www.cs.purdue.edu/archives/2002/wxg/codes/r jacobi.m’,’r jacobi.m’)
5 % urlwrite(’http://www.cs.purdue.edu/archives/2002/wxg/codes/r jacobi01.m’,’r jacobi01.m’)

6 tol=1e−9; maxit=1000; n=size(P,1); v=1/n;

7 ab=r jacobi01(N,a,b); xw=gauss(N,ab); xw(:,2) = (1./beta(b+1,a+1))*xw(:,2);

8 xw(:,1) = (r−l).*xw(:,1)+l; % generate the quadrature rule by scale and shift

9 ex = zeros(n,1); stdx = zeros(n,1); % initialize running sums
10 for i=1:N

11 % solve the PageRank system
12 x = inoutpr(P,xw(i,1),v,min(tol./xw(i,2),1e−2), ... % adjust tol and maxit

13 2*ceil(log(min(tol./xw(i,2),1e−2))/log(xw(i,1))));% for mult by xw(i,2)
14 ex = ex+xw(i,2).*x; stdx = stdx+xw(i,2).*(x.ˆ2);

15 end

16 stdx = sqrt(stdx − ex.ˆ2); % convert to stdx

Figure 8. Using Gautschi’s OPQ codes, r_jacobi01.m and gauss.m, a Matlab
quadrature implementation is quite easy. The function inoutpr solves a strongly
preferential PageRank problem for a row substochastic matrix P and takes pa-
rameters α, v, tolerance, and maximum iteration.

E [x(A)] ≈
N∑

i=1

xiwi, (6.5)

Std [x(A)] ≈
√√√√ N∑

i=1

(xi • xi)wi −
(

N∑
i=1

xiwi

)
•
(

N∑
i=1

xiwi

)
.

These two procedures—compute xi and a weighted sum—constitute the algo-
rithm for Gaussian quadrature implemented in Figure 8.

For the quadrature rule (6.3), the nodes zi are known to lie on the interior
of the integration region, l < zi < r. Furthermore, the weights wi are strictly
positive. The first property is essential to using quadrature with PageRank
when the right endpoint is 1 (i.e., r = 1). It states that we do not have to
compute a PageRank vector at α = 1. Many other quadrature rules, such as
Clenshaw–Curtis, Gauss–Radau, and Gauss–Lobatto, all utilize a function value
at one or both of the endpoints. For PageRank, computing the limit vector
x(1) efficiently is still an open problem, and hence these alternatives are not
appropriate.

As Figure 8 shows, implementing the Gaussian quadrature algorithm is easy
using the OPQ routines [Gautschi 02]. A more efficient code for computing
the Gaussian quadrature rule is available in the chebfun package’s function
jacpts.m [Trefethen et al. 09]. In the code, we adjust the solution tolerance of
the linear system based on the weights of the final quadrature summation. We
call this a weighted tolerance τ .
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7. Algorithm Analysis

In this section, we compare and analyze the algorithms using theoretical and
numerical techniques. As with many such comparisons, the theoretical analysis
does not treat every case, and the numerical comparisons are always limited to
the chosen experiments. Nevertheless, the combined examination yields strong
suggestions for the choice of algorithm and implementation when applied to
RAPr. For a compact summary of the properties of the methods, see Table 2.
The twin objectives of the analysis are work and accuracy. Both are typically
proportional to N , the number of terms used in the approximate statistics. For
the Monte Carlo, N is number of samples (i.e., the number of PageRank sys-
tems solved). For the path-damping approach, N is the number of terms of the
Neumann series (i.e., the number of matrix–vector products). For the Gaussian
quadrature algorithm, N is the number of quadrature points (i.e., the number
of PageRank systems solved). As we shall show in the following sections, each
algorithm produces a sequence of vectors as a function of N that converges
to the exact answer as N goes to infinity. One of the key quantities listed in
the table is the rate at which these algorithms converge. In the three follow-
ing sections, we establish the convergence rate and work for each of these three
algorithms.

7.1. Monte Carlo

The convergence behavior for Monte Carlo is well known [Asmussen and Glynn 07].
The question we address here regards the work that this procedure requires. In
Monte Carlo, we have to solve N PageRank systems at random values of α.
Each PageRank problem is solved iteratively and matrix–vector multiplications
with P dominate the work. We cannot find a precise number of matrix–vector
multiplications because the work varies between runs. Instead, we compute the
expected (or average) number.

Let x∗ be the exact solution of a PageRank problem. We begin our formal
analysis by noting that the kth iterate from the power method on the PageRank
system satisfies ∥∥∥x(k) − x∗

∥∥∥ ≤ 2αk. (7.1)

Thus, when k > log(ε)/ log(α), it has error bounded by 2ε, which takes at most
k iterations (matrix multiplications). Empirically, the inner–outer method uses
fewer iterations than the power method, so we use the upper bound from the
latter.
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Method Nonintrusive Update Storage

Monte Carlo + + prsolve + 2 n-vectors

Path Damping − + P mult + 5 n-vectors

Gaussian Quadrature + − prsolve + 2 n-vectors

(a) Algorithm properties

Method Conv. Work Required What is N?

Monte Carlo 1√
N

N PageRank sys-
tems

number of sam-
ples from A

Path Damping
(without
Std [x(A)])

rN+2

N1+a N + 1 matrix–
vector products

terms of the Neu-
mann series

Gaussian
Quadrature

r2N

γ−N
N PageRank sys-
tems

number of
quadrature points

(b) Convergence analysis

Table 2. A brief summary of our results about each method. A nonintrusive
method uses only an existing PageRank solver. The Monte Carlo and path-
damping algorithms can be updated from N to N + 1 with no more work than
another iteration, whereas the Gaussian quadrature routines produce different
instances when N is incremented. For storage, prsolve is the storage required
to solve a PageRank problem, and P mult is the storage required for the matrix
P. The convergence results show how the norm of the error decays as a function
of N , the intrinsic parameter of the method, and both a and r, the parameters
from the beta distribution. For quadrature, we list two bounds. The first applies
when r < 1, while the second is a generic bound on a quadrature method in
terms of γ > 1, which is related to the region of analyticity of the components of
the PageRank function. We have geometric convergence in either case.

Using the bound (7.1), we can estimate the expected number of iterations in
the Monte Carlo method given that we are taking N samples:

E [M ] =
N∑

i=1

E [Mi] ≤ N

∫ r

l

log(ε)
log(τ)

ρ(τ) dτ︸ ︷︷ ︸
expected iterations for one sample

, (7.2)

where M is the total number of matrix–vector multiplications and Mi is the
number of iterations in the ith random sample.

In the case that ρ(τ) corresponds to a beta distribution over (0, 1) with integer
a > 0, b > 0, we can solve the integral analytically. The following theorem
summarizes the result, which follows simply by solving (7.2) when ρ is from the
appropriate distribution.
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Theorem 7.1. If A ∼ Beta(a, b, [0, 1]) with integers a > 0 and b > 0, then approxi-
mating E [x(A)] with an N -sample Monte Carlo method takes

N
log ε

Beta(a + 1, b + 1)

a∑
k=0

(−1)k

(
a

k

)
log(b + k + 1) (7.3)

matrix multiplications in expectation.

One problem with this theorem is that it does not handle a = 0, b = 0, the
case in which A is uniformly distributed. Computing this expectation exactly
is impossible in this case because the improper integral

∫ 1

0 log−1(τ) dτ does not
converge. To handle this case, we would need to use an algorithm in which the
number of iterations does not go to ∞ as α → 1. The bound for the power
method, unfortunately, is insufficient for this task.

7.2. Path Damping

When A ∼ Beta(a, b, [0, r]), r ≤ 1, we can explicitly bound the convergence of the
path-damping algorithm for E [x(A)]. Recall the path-damping approximation
from (6.1):

E [x(A)] ≈ x(N) =
N∑

�=0

E
[
A� − A�+1

]
P�v +

(
1 −

N∑
�=0

E
[
A� − A�+1

])
PN+1v.

Note that (
1 −

N∑
�=0

E
[
A� − A�+1

])
= E

[
AN+1

]
.

Thus we have

∥∥∥x(N) − x∗
∥∥∥ =

∥∥∥∥∥E [AN+2
]
PN+1v −

∞∑
�=N+2

E
[
A� − A�+1

]
P�v

∥∥∥∥∥
≤ E

[
AN+2

]
+ eT

∞∑
�=N+2

E
[
A� − A�+1

]
P�v

≤ 2 E
[
AN+2

]
.

We could have removed the final normalization term E
[
AN+1

]
PN+1v in the

summation and bounded the result by E
[
AN+1

]
instead. However, the iteration

we outlined in the algorithms section gives us better performance in practice.
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For l = 0 and r ≤ 1, the moments are scaled modifications of (6.2). Using
these moments shows that

E
[
AN+2

]
= rN+2 Γ(b + N + 3)Γ(a + b + 2)

Γ(b + 1)Γ(a + b + N + 4)

≤ rN+2 Γ(a + b + 2)
Γ(b + 1)

1
(b + N + 3)a+1

,

from which we conclude that the path-damping algorithm for computing E [x(A)]
converges like rN+2/Na+1.

7.3. Error Bounds on Gaussian Quadrature

Quadrature methods are old tools, and many excellent error analysis techniques
exist. For example, [Davis and Rabinowitz 84] devotes an entire chapter to
their study. Let xGQ(N) be the approximation to E [x(A)] using an N -point
quadrature rule. We can achieve only an error bound for any component of the
solution and thus use the upper bound∥∥∥E [x(A)] − xGQ(N)

∥∥∥ ≤ n max
i

∣∣∣E [xi(A)] − x
GQ(N)
i

∣∣∣ .
This bound is terrible for large n, and we do not expect it to be tight. Instead,
we focus on the error decay—how much the error drops when N increases.

Computing an explicit bound on a component is possible and is given by the
following theorem.

Theorem 7.2. Let A be a random variable with a continuous density function sup-
ported in [0, r], where r < 1. Let x

GQ(N)
i be an N -point quadrature approximation

to the ith component of x(A). The error in the Gaussian quadrature approxima-
tion of E [x(A)] is bounded above by∣∣∣E [xi(A)] − x

GQ(N)
i

∣∣∣ ≤ 32ωr

15(1 − ρ−2)ρ2N+2
,

where N is the number of points in the Gaussian quadrature rule,

ω =

√
1 +

1
r
, and ρ =

1
r

+

√
1
r2

− 1.

In the interest of space, we defer the proof, which involves some intriguing
facts about the PageRank function with a complex value for α, to Section 11.
Thus, the quadrature codes converge to the exact solutions as N → ∞ when
r < 1.
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If the goal, however, is not an explicit bound, then we can use classical results
about the region of analyticity to determine the asymptotic convergence rate of
the quadrature rule for r ≤ 1. Namely, let γ denote the sum of the semimajor
and semiminor axes of the largest ellipse for which the components of x(α) are
analytic. Then the error in a quadrature rule converges asymptotically at a rate
of O(γ−N ) [Davis and Rabinowitz 84]. For PageRank, this result immediately
shows that the quadrature rule always converges at a geometric rate governed
by the closest singularity to the region [l, r]. The singularities of the PageRank
function of α are 1/λ for each eigenvalue λ of P that is not λ = 1. In our
definition of PageRank, we assume that x(1) assumes the limiting value. Thus
there is no singularity at α = 1. Without knowing the eigenvalues, we cannot
bound the rate precisely.

7.4. Implementation Correctness and Convergence

In this section, we present empirical results pertaining to the accuracy and con-
vergence of our implementations. This type of analysis is important because
numerical experimentation allows us to explore broader ranges of parameter val-
ues than may be feasible in the theoretical analysis. Additionally, it provides
strong evidence that we have correctly implemented all the algorithms in this
manuscript. To begin, we use three experiments to verify that our algorithms
are convergent when implemented with and without approximate solutions of the
linear algebra problems. Each of our algorithms has a parameter N that controls
the degree of approximation. Theoretically, all the algorithms are convergent as
N → ∞.

We first test this convergence by comparing with a semianalytical solution. Us-
ing the symbolic toolbox inside Matlab, we compute the PageRank vector as a
rational function of α on the har500cc graph, a 335-node connected component.
Using Mathematica, we then numerically integrate (6.5) for the expectation and
standard deviation in 32-digit arithmetic. This process resolves the solution
when converted to a double-precision number. Finally, we track convergence of
each algorithm to these semianalytical solutions in Figure 9(a).

As the respective N increases, all methods demonstrate convergence to the
exact solution. For the same graph, we also analyze another measure we term
stepwise convergence by tracking the 1-norm change when incrementing N to
N + 1:

∥∥y(N+1) − y(N)
∥∥. See Figure 9(b); this measure is tractable to compute

for an unknown solution, and we hope to see convergence here as well. Both of
these results use a direct method to solve any linear system that arises. Finally,
we replace har500cc with cnr-2000, a 325,557-node graph, and use the inner–
outer iteration to solve the PageRank systems with a tolerance of 10−8. In all



�

�

“imvol6” — 2010/9/22 — 15:14 — page 214 — #26
�

�

�

�

�

�

214 Internet Mathematics

10
0

10
1

10
2

10
3

10
4

10
5

10
−15

10
−10

10
−5

10
0

10
0

10
1

10
2

10
3

10
4

10
5

10
−15

10
−10

10
−5

10
0

0 10 20 30 40 50 60 70 80 90 100

10
−15

10
−10

10
−5

10
0

Monte Carlo Path damping Gaussian quadrature

(a) Convergence to analytical solutions (N vs.
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(b) Stepwise convergence (N vs.
∥∥y(N+1) − y(N)

∥∥) with direct methods on har500cc
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(c) Stepwise convergence (N vs.
∥∥y(N+1) − y(N)

∥∥) with iterative methods on cnr-2000

Figure 9. All of our implementations converge with iterative methods and di-
rect methods in a stepwise sense for y(N) ≈ E [x(A)] (dotted points) and
y(N) ≈ Std [x(A)] (“+” points). Computing the standard deviation with path
damping was too inefficient to include. The colors correspond to distributions
from Figure 4.

of these cases, the algorithms are convergent.
We now make a few additional observations:

� The Monte Carlo method has similar convergence behavior for all distri-
butions and does not achieve better than expected 1/

√
N accuracy for all

tests.

� The Beta(2, 16, [0, 1]) problem (solid line) requires the largest N for all
methods except Monte Carlo.

� The accuracy of the standard deviation is less than the accuracy of the
expectation.

� Using stepwise convergence as a proxy for analytical convergence in path
damping can produce significant errors.

The last statement merits further comment. A simple calculation shows that
stepwise convergence of the path-damping expression is∥∥∥x(N)

PD − x(N+1)
PD

∥∥∥ = E
[
AN+2

] ∥∥PN+2v − PN+1v
∥∥ ,
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Figure 10. The time required to compute the results from Figure 9(c) for E [x(A)],
A ∼ Beta(2, 16, [0, 1]).

which is how we compute the values for the figures. The theoretical bound is
much weaker with ‖PN+2 − PN+1‖ replaced by the trivial value 2. When the
vectors PNv reach a small value, stepwise convergence is no longer a good bound.
Consequently, our final code for the path damping formulation uses E

[
AN+2

]
to test convergence instead.

Next, we examine the runtime for these methods in the hard case of the
Beta(2, 16, [0, 1]) distribution—the case r = 1 has the slowest convergence for
all the methods. Figure 10 displays the values of Figure 9(c) against the time
they took to compute. Again, the standard deviation was not computed for the
path-damping algorithm. These timings include all computations of moments
and eigenvalues for path damping and Gaussian quadrature.

Based on these experiments, we advise the following. Path damping is the algo-
rithm of choice when r � 1 or the standard deviation is not required. Otherwise,
the best method for computing both the expectation and standard deviation for
reasonably accurate (≈ 10−4–10−8) solutions is Gaussian quadrature with about
33 points. Using 33 quadrature points may seem like a lot to those accustomed
to integrating smooth functions. With PageRank, there is a singularity near the
region of integration and we need to use many points.

8. Data

Before discussing applications of our method, we first summarize the data we use
in Table 3. For both the har500cc and us2004cc, we precomputed the largest
strong component of the original graph and used the strong component itself.
The other graphs were translated from their native form to a Matlab sparse
matrix and then either saved in a Matlab file or converted into a BVGraph file
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Name Source |V| |E| |C| max |Ci|
har500cc [Moler 04] 335 1,963 1 335 100 %

cnr-2000 [Boldi et al. 04,
Boldi and Vigna 05]

325,557 3,216,152 100,977 112,023 34 %

uk-2006-host [Castillo et al. 06] 11,402 730,774 2,935 7,945 70 %

uk-2007-host [Castillo et al. 06] 114,529 1,836,441 54,822 59,160 52 %

nz2006 [Thelwall 03] 604,913 3,777,080 455,317 144,020 24 %

eu-2005 [Boldi et al. 04,
Boldi and Vigna 05]

862,664 19,235,140 90,768 752,725 87 %

us2004cc [Thelwall 03] 1,084,200 11,554,007 1 1,084,200 100 %

enwiki-2008 Section 8, [Vari-
ous 08]

4,982,964 63,242,904 1,799,291 3,175,527 64 %

indochina [Boldi et al. 04,
Boldi and Vigna 05]

7,414,866 194,109,311 1,749,052 3,806,327 51 %

uk2005 [Thelwall 03] 10,037,216 47,993,341 7,338,097 2,604,479 26 %

uk-2006-05 [Castillo et al. 06] 77,741,046 2,965,197,340 10,789,143 49,710,330 64 %

generank [Morrison et al. 05] 4,047 339,596 10 4,026 99 %

Table 3. The data sets used in our experiments span a wide range of sides. The
two host databases are weighted host graphs, whereas the generank matrix is a
weighted undirected graph. Let V denote the set of vertices, E the set of edges,
and C = {Ci} the set of connected components.

[Boldi and Vigna 04]. The uk-2006-host, uk-2007-host, and generank graphs
are weighted. On these graphs, we used the natural weighted-degree random
walk instead of a strict-degree-based random walk.

Wikipedia provides complete copies of their user-edited encyclopedia for down-
load [Various 08]. We downloaded a database of their current page text from
January 3, 2008, and converted it into a link graph. To keep the encyclopedia
as the main focus, we only used pages in the “main” (the encyclopedia articles),
“category” (a taxonomic organization of the articles), and “portal” (entrance
guides to groups of articles) namespaces.

9. Applications

Thus far, we have theoretically examined the RAPr model, given algorithms to
compute its statistics, and analyzed those algorithms; we have yet to address
applications of this model. We do so now. Our first finding is that although the
expected value of the RAPr model appears to order nodes like the deterministic
PageRank vector at the expected α, the standard deviation vector orders nodes
differently. We demonstrate this behavior for a range of graphs and distributions
of A. Then, we show similar observations on a large web graph and discuss the
intersection similarity of the standard deviation vector for this graph. Next, we
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present an example of our model outside the web graph domain and observe that
this ranking behavior of the standard deviation vector holds for a gene-ranking
application. Finally, we show that using the standard deviation information
aids a spam classification task. All of these experiments show that the standard
deviation of RAPr ought to be useful in other applications, precisely because it
reveals something different from PageRank.

9.1. PageRank

To begin our empirical analysis of RAPr, we present Table 4. In this table, we
attempt to understand how the information from RAPr compares with stan-
dard PageRank. Our hope is that some of the information is different and that
this information might aid a machine-learning framework. For the four beta
distributions we have examined throughout this manuscript, the table presents
the 1-norm, Kendall’s τ correlation coefficient, and a truncated-τ correlation
coefficient between x(E [A]), E [x(A)], and Std [x(A)]. The 1-norm difference is
rescaled to be related to a correlation coefficient when applied to probability
distribution vectors. The τ value is 1 for identical lists and −1 for inverted lists.
It is a common measure of correlation between the ranks induced by a vector,
rather than the values, and has been used to study differences among PageRank
variations [Baeza-Yates et al. 06]. The truncated-τ or τε measure removes digits
less than ε before computing τ . Formally,

τε(y, z) = τ(ε round(y/ε), ε round(z/ε)),

where the “round function” rounds to the nearest integer. The τε measure is
motivated by inconsistencies with the τ measure and inaccurate computation
[Boldi et al. 07]. The expectation and standard deviation were computed with a
33-point quadrature rule and each PageRank system solved to a weighted 10−9

tolerance (see Section 6.4).
From the table we make the following observations:

� The PageRank vector x(E [A]) and the expected value in the random model
E [x(A)] are numerically similar and induce similar orderings of the pages.

� The standard deviation vector Std [x(A)] is neither numerically similar nor
similar in either τ metric to x(E [A]).

� Using τε can give different results.

� The behavior of the standard deviation vector is not consistent between
graphs and distributions.
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Graph Beta y = x(E [A]), z = E [x(A)] y = x(E [A]), z = Std [x(A)]
a b l r f(y, z) τ(y, z) τε(y, z) f(y, z) τ(y, z) τε(y, z)

uk-2006-host 0 0 0.6 0.9 0.972 0.995 0.995 0.173 0.200 0.196
2 16 0 1 0.943 0.994 0.994 0.231 0.599 0.597
1 1 0.1 0.9 0.963 0.984 0.983 0.229 −0.421 −0.418
−0.5 −0.5 0.2 0.7 0.970 0.983 0.982 0.210 −0.457 −0.454

uk-2007-host 0 0 0.6 0.9 0.971 0.997 0.993 0.176 −0.071 −0.072
2 16 0 1 0.944 0.996 0.995 0.232 0.498 0.455
1 1 0.1 0.9 0.961 0.987 0.987 0.221 −0.578 −0.557
−0.5 −0.5 0.2 0.7 0.969 0.986 0.975 0.201 −0.586 −0.563

nz2006 0 0 0.6 0.9 0.984 0.995 0.978 0.114 −0.546 −0.333
2 16 0 1 0.976 0.996 0.966 0.135 0.027 −0.192
1 1 0.1 0.9 0.975 0.981 0.980 0.143 −0.620 −0.506
−0.5 −0.5 0.2 0.7 0.980 0.981 0.950 0.125 −0.614 −0.527

eu-2005 0 0 0.6 0.9 0.975 0.993 0.987 0.174 0.318 0.286
2 16 0 1 0.952 0.992 0.982 0.214 0.517 0.524
1 1 0.1 0.9 0.962 0.976 0.975 0.267 −0.536 −0.518
−0.5 −0.5 0.2 0.7 0.968 0.975 0.974 0.251 −0.621 −0.604

us2004cc 0 0 0.6 0.9 0.971 0.989 0.990 0.173 0.179 0.177
2 16 0 1 0.947 0.985 0.986 0.225 0.436 0.461
1 1 0.1 0.9 0.960 0.969 0.973 0.247 −0.395 −0.364
−0.5 −0.5 0.2 0.7 0.967 0.969 0.974 0.230 −0.489 −0.468

enwiki-2008 0 0 0.6 0.9 0.981 0.996 0.995 0.180 0.240 0.159
2 16 0 1 0.975 0.995 0.994 0.189 0.381 0.184
1 1 0.1 0.9 0.961 0.986 0.984 0.277 −0.444 −0.406
−0.5 −0.5 0.2 0.7 0.966 0.986 0.984 0.262 −0.578 −0.222

indochina 0 0 0.6 0.9 0.975 0.993 0.968 0.165 0.189 0.229
2 16 0 1 0.946 0.991 0.972 0.217 0.479 0.569
1 1 0.1 0.9 0.966 0.974 0.958 0.250 −0.542 −0.284
−0.5 −0.5 0.2 0.7 0.973 0.973 0.949 0.235 −0.613 −0.358

uk2005 0 0 0.6 0.9 0.985 0.997 0.903 0.110 −0.519 −0.199
2 16 0 1 0.974 0.997 0.967 0.134 0.065 −0.034
1 1 0.1 0.9 0.977 0.985 0.947 0.144 −0.596 −0.080
−0.5 −0.5 0.2 0.7 0.981 0.984 0.916 0.128 −0.598 −0.137

Table 4. The function f(y, z) = 1 − ‖y − z‖ shifts the difference in norm to
[−1, 1] to make the values comparable to the other correlation coefficients; τ is
Kendall’s τ correlation coefficient; and τε is τ with y and z truncated to eight
digits. Values near 0 indicate places where the vectors are uncorrelated.

The first column group of the table justifies the first statement. All the values
are near 1, which indicates a close correlation between two measures. The marked
reduction in shading in the second column group explains the second, and the
seemingly random values in this column group justify the last statement. In-
terestingly, four graphs behave nearly the same: uk-2006-host, uk-2007-host,
eu-2005, and us2004cc. With the exception of uk-2007-host, these graphs
have the highest percentage of nodes in the largest strong component.

The graph uk2005 demonstrates the largest discrepancy between τ and τε.
This relatively large difference may signify that it differs characteristically from
the other graphs. However, most of its standard deviation values are less than
10−8, so truncating the τ metric with ε = 10−8 may lose important information.
Another explanation for the discrepancy is that more than half of the nodes in
this graph have no links.
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9.2. PageRank on a Large Graph

The graphs in the previous section are small compared with the size of the true
web graph. Now we address computing the quantities on a graph with 78 million
nodes and just under 3 billion edges: the uk-2006 web spam test graph [Castillo
et al. 06]. Even this graph is tiny compared with the real web graph, which is
known to be over 150 billion pages [Cuil 09]. Our distributions of interest are
A1 ∼ Beta(2, 16, [0, 1]) and A2 ∼ Beta(1, 1, [0, 1]). We chose the former because
E [A1] = 0.85, the canonical value of α, and the latter because E [A2] = 0.5, a
recently proposed alternative value of α. Both of these distributions have small
a and support that extends all the way to 1. This makes computing the solution
with path damping a difficult proposition, so we chose to use Gaussian quadra-
ture. For A1 we used a 25-point rule, and for A2 we used a 10-point rule. The
error bounds on quadrature state that these results may have considerable error
from the quadrature approximation. But for big problems, running hundreds of
Gauss points is not feasible (in Section 10, we discuss a few ideas to make the
codes more scalable).

While the Matlab codes given throughout this manuscript handle this graph
through the bvgraph package, working in Matlab yields roughly half the speed
of an optimized computation. Consequently, we used a C++ implementation
of the inner–outer iteration to solve the PageRank systems and compute the
aggregated solution using a bvgraph structure to hold the graph in memory
[Boldi and Vigna 04].

The time required for our deterministic solves (tolerance 10−12) was

α = 0.85, 204 minutes,
α = 0.5, 51 minutes.

Computing the expectation and standard deviation in the RAPr model required

A1, 6199 minutes,
A2, 1569 minutes.

Our codes solved each PageRank vector to a tolerance of 10−12. This accuracy is
far more than required when given the intrinsic error in the quadrature approxi-
mation mentioned above. Nevertheless, we might as well get something accurate
with these computations when we can.

To analyze the output, we used two schemes. First, we applied the truncated
τ measure to the expectation and standard deviation vectors (Table 5). The
comparison shows that E [x(A)] ≈ x(E [A]) in terms of ranking and that the
standard deviation vectors behave differently under this measure. Interestingly,
the standard deviation vector for A2 appears to invert the orderings of all other
measures, and the magnitude of its anticorrelation is much stronger than for A1.
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z
y x(0.85) x(0.95) E [x(A1)] E [x(A2)] Std [x(A1)] Std [x(A2)]

x(0.5) 0.850 0.765 0.845 0.956 0.412 -0.538
x(0.85) 0.910 0.967 0.891 0.294 −0.675
x(0.95) 0.916 0.808 0.219 −0.706

E [x(A1)] 0.892 0.287 −0.675
E [x(A2)] 0.378 -0.577

Table 5. The truncated τ values (τε(y, z) with ε = 10−10) again show that
the standard deviation vectors produce different rankings from the expectation
vectors for the graph uk-2006 with 77 million vertices and 2.2 billion edges. Here
A1 is a Beta(2, 16, [0, 1]) random variable with statistics computed using a 25-
point quadrature rule, and the parameter A2 is a Beta(1, 1, [0, 1]) random variable
computed using a 10-point quadrature rule.

The second comparison metric is the intersection similarity metric [Boldi 05].
Whereas the τ metric counts interchanges and uses the same score for trans-
positions at the head and tail of the ranking, the intersection similarity shows
the regions in which the two ranked lists differ. Given two ordered sequences of
items A and B, let Ak (respectively Bk) be the top k items in A (respectively
B). Then

isimk(A,B) =
1
k

k∑
j=1

|AjΔBj |
2j

,

where Δ is the symmetric difference operator between two sets. The intersection
similarity is the average of the normalized symmetric differences for all top-j
lists with j ≤ k. If the two orderings are identical, then isimk = 0 for all k.
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Figure 11. The intersection similarity metric for the uk-2006 graph shows that the
standard deviation vector is unlike the PageRank vector under this measure. The
computations were done for A1 ∼ Beta(2, 16, [0, 1]) with a 25-point quadrature
rule and for A2 ∼ Beta(1, 1, [0, 1]) with a 10-point quadrature rule.
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If the two sequences have disjoint items, then isimk = 1. Figure 11 displays
this value for the standard deviation vectors. For A1, the intersection similarity
hovers around 0.3 with increases at 10, 1000, and 10,000,000 pages. In contrast,
Std [x(A2)] has a higher intersection similarity for the first 106 pages and orders
the tail quite differently, resulting in a peak past 106 pages. This final peak is
perhaps indicative of the negative τ correlation between Std [x(A2)] and x(0.5).

These results support our claim that the standard deviation of RAPr reveals
characteristically new information about the underlying graph. Now we explore
an application far from working with web graphs.

9.3. Gene Regulatory Networks

Recently, many authors have used PageRank-type equations as measures on
arbitrary graphs. Among these measures are GeneRank [Morrison et al. 05] for
identifying important genes in a regulatory network, ProteinRank [Freschi 07]
for identifying important proteins, and IsoRank [Singh et al. 07] for identifying
important edges in a graph-isomorphism-like problem. We will demonstrate the
results of RAPr on the GeneRank problem using the data published for that
paper.

In this context, we cannot interpret RAPr as representing a hypothetical
random surfer. Instead, the GeneRank vector is used with a single choice of
α to infer important genes. We propose using the standard deviation vector
as another set of important genes, or as “confidence bounds” on the actual
importance values for a gene. GeneRank uses an undirected graph of known
relationships between genes instead of the directed web graph in PageRank and
specifies a teleportation vector v based on the expression level for each gene
in a microarray experiment. In our experiments, we look at the τ correlation
between x(E [A]), E [x(A)], and Std [x(A)] for a range of parameters when A ∼
Beta(0, 0, [l, r]) and when A ∼ Beta(a, b, [0, 1]). The expectation and standard
deviation vectors are computed with a 50-point quadrature rule with a direct
solution method.

Table 6 presents the τ correlations. We note a few interesting observations.
Again, the τ difference between the expectation and PageRank vector is negligi-
ble, whereas the standard deviation vector does produce a value of τ much closer
to zero. For all the tests, τ is positive, and as the mass of the Beta distribution
shifts closer to 1, the τ values become larger. We hypothesize that these effects
are due to the symmetric nature of the initial GeneRank graph, which has a sta-
tionary distribution proportional to the weighted degree of a node. From these
experiments, we believe that looking at the standard deviation vector would be
useful in this application.
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r
l 0.2 0.4 0.6 0.8 1.0

0.0 0.999 0.996 0.988 0.973 0.935
0.2 0.999 0.994 0.980 0.944
0.4 0.998 0.988 0.954
0.6 0.996 0.967
0.8 0.984

(a) Values of τ(x(E [A]), E [x(A)]), A ∼ U(l, r)

r
l 0.2 0.4 0.6 0.8 1.0

0.0 0.166 0.212 0.261 0.317 0.389
0.2 0.256 0.305 0.356 0.414
0.4 0.342 0.381 0.413
0.6 0.382 0.381
0.8 0.326

(b) Values of τ(x(E [A]), Std [x(A)]), A ∼ U(l, r)

b
a 1 4 7 10 13 16
1 0.964 0.965 0.970 0.975 0.979 0.982
4 0.990 0.985 0.984 0.985 0.985 0.986
7 0.995 0.992 0.990 0.990 0.990 0.990

10 0.997 0.995 0.994 0.993 0.993 0.993
13 0.998 0.996 0.995 0.995 0.995 0.994
16 0.999 0.997 0.997 0.996 0.996 0.995

(c) Values of τ(x(E [A]), E [x(A)]), A ∼ Beta(a, b, 0, 1)

b
a 1 4 7 10 13 16
1 0.378 0.410 0.386 0.362 0.344 0.331
4 0.263 0.362 0.395 0.399 0.392 0.383
7 0.217 0.305 0.355 0.382 0.392 0.394

10 0.194 0.268 0.319 0.352 0.373 0.385
13 0.180 0.244 0.291 0.326 0.350 0.367
16 0.170 0.226 0.269 0.303 0.329 0.349

(d) Values of τ(x(E [A]), Std [x(A)]), A ∼ Beta(a, b)

Table 6. For the generank matrix, the Kendall-τ correlation coefficient shows that
the PageRank and the expected PageRank order the genes similarly, whereas the
standard deviation vector produces a different ordering under a wide range of
parameters of the beta distribution.

9.4. Spam Classification

Thus far, the evaluations of RAPr have been speculative. We have seen that the
standard deviation vector differs from the standard PageRank vector. However,
the proof is in the pudding and for RAPr, the pudding is spam.

Web spam occurs when a web site consists primarily of misleading content or
links designed to draw visitors to generate ad revenue or inflate another site’s
importance. Web spam is distinguished by this artificiality. Identifying these
sites is a growing problem, and one technique is pure link analysis. Hypotheti-
cally, spam sites have different linking patterns from those of organic (nonspam)
sites.
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Figure 12. The background histogram displays (log) standard deviation scores
for nonspam hosts when A ∼ Beta(2, 16, [0, 1]). The foreground (black line)
plot shows the same data for spam hosts. Each host is represented by its home
page score and the statistics are computed with a 21-point quadrature rule. The
second figure shows the same data for the (log) ratio of standard deviation over
expectation.

In [Castillo et al. 06] and [Becchetti et al. 08], the authors investigate identify-
ing web spam purely from link analysis. They labeled around 7,500 hosts from
the uk-2006 graph as follows:

Label Training Test

spam 674 1250
nonspam 4948 601
no label 5780 9551

The data have a training and test subset, although only the training subset is
used in [Becchetti et al. 08] and in the following experiments. In the remainder
of our own experiment, we continue following the methodology of [Becchetti
et al. 08], and add the standard deviation vector from RAPr as an additional
feature for a spam classification task. The fact that the authors have released
their data makes experimentation straightforward.

Figure 12 shows that the standard deviation information identifies some spam
pages. In particular, a high standard deviation relative to PageRank (the right-
hand side of the right-hand figure) is a reasonably strong indicator. Ironically, a
low standard deviation also appears to be an indicator.

Feature vectors for each host are included with the data from [Becchetti et
al. 08]. These features are numerical results that may have an impact on the
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“spamminess” of the pages on that web host and include TrustRank [Gyöngyi et
al. 04], PageRank, and Truncated PageRank [Becchetti et al. 08] among others.
Thus, pure PageRank ideas are already included. To support our statement that
the standard deviation of RAPr is different, we must be able to improve upon
the performance with all these features present.

Although measures such as PageRank, TrustRank, and RAPr produce one
or two scores for each page, the previous study found that computing a few
variations on these features aided the classification task. Thus, for RAPr on
each host, we produce the following, where the RAPr scores are from the host
home page and the page with largest PageRank on the host:

� log of RAPr expectation

� log of (RAPr expectation / log of outdegree)

� log of (RAPr expectation / log of indegree)

� standard deviation of RAPr expectation on in-links

� log of (standard deviation of RAPr expectation on in-links / PageRank)

� log of RAPr standard deviation

� log of (RAPr standard deviation / log of outdegree)

� log of (RAPr standard deviation / log of indegree)

� standard deviation of standard deviation on in-links

� log of (standard deviation of RAPr standard deviation on in-links / Page-
Rank)

� log of (standard deviation of RAPr / RAPr expectation)

In total, we produce 22 features (= 11 from the list ×2 for the different host
pages) from the RAPr statistics.

Hosts, with all of their features, are then input to a machine-learning frame-
work that attempts to learn a decision rule about spam based on these features.
Just as in the original work, we use a bagged J48 tree classifier in Weka [Witten
and Frank 05] with 10 bags. Bagging a classifier produces a new classifier whose
label is the consensus of a bag of independent classifiers. On the training data,
we conducted 50 independent tenfold cross-validation experiments to estimate
the performance of the classifier, and Table 7 displays the results. For each
classifier, we show the following:
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Precision Recall f-score False Pos. False Neg.

Baseline 0.694 0.558 0.618 0.034 0.442
Beta(1.5, 0.5, 0, 0.99) 0.692 0.557 0.617 0.034 0.443
Beta(−0.5,−0.5, 0.3, 0.99) 0.698 0.564 0.624 0.033 0.436
Beta(0.5, 1.5, 0, 0.99) 0.695 0.561 0.621 0.034 0.439
Beta(10, 10, 0.3, 0.7) 0.690 0.560 0.620 0.034 0.442
Beta(1, 1, 0, 1) 0.698 0.562 0.622 0.033 0.438
Beta(2, 16, 0, 1) 0.699 0.562 0.623 0.033 0.438

Table 7. Our performance baseline includes all the features from [Becchetti et
al. 08]. Each row represents adding features from RAPr based on a particular
beta distribution. The results are averaged over fifty repetitions of tenfold cross
validation with a 10-bag J48 decision tree classifier. After adding features based
on RAPr, we observe an improvement in the f -score. Consequently, these fea-
tures uncover new information in the graph that is not expressed by PageRank.

� precision: fraction of spam pages corrected labeled as spam;

� recall: fraction of total spam pages identified;

� fscore: harmonic mean of precision and recall;

� false positive: fraction of nonspam pages mislabeled as spam;

� false negative: fraction of spam pages mislabeled as nonspam.

The RAPr features improve the performance of the classifier! It is a small
improvement, only a few tenths of a percent. We obtain the best classification
performance using features from the Beta(−0.5,−0.5, [0, 3, 099]) distribution. In
some sense, this distribution represents the least likely surfer behavior. In con-
trast to many of the other metrics investigated in the baseline performance,
there is no tuning of the RAPr metrics for spam ranking. If we combined RAPr
and TrustRank, for example, it may be possible to achieve even better perfor-
mance.

10. Conclusion

By incorporating information from multiple random surfers simultaneously, the
RAPr model increases the flexibility of PageRank models considerably. It gener-
alizes the many properties of the PageRank vector in a straightforward way. The
expectation statistic generalizes other PageRank variants including the Total-
Rank algorithm.

We have presented three algorithms to compute the expectation and standard
deviation for the RAPr setup. Two of these algorithms just use PageRank
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solutions at multiple values of α. These algorithms can take advantage of any
future acceleration in PageRank solvers [Karande et al. 90] or methods that
exploit graph-theoretic optimizations [Eiron et al. 04, Ipsen and Selee 07, Lin
et al. 09, Langville and Meyer 06, Lee et al. 07]. All methods converge both
theoretically and empirically. Thus, computing these quantities is not a problem.

We observe that the standard deviation vector is uncorrelated with the Page-
Rank vector under the Kendall-τ correlation coefficient. This observation holds
for a wide variety of graphs, including a large (three-billion-link) graph, and a
gene association graph. The RAPr statistics also improve a spam classification
task. Thus we conclude that the standard deviation of RAPr represents a new
and useful metric for an importance ranking on a graph.

While this paper presents an investigation into RAPr, we suggest two direc-
tions for further research.

First, although Gaussian quadrature is the fastest method to compute the
expectation and standard deviation in the RAPr model, faster approximations
are likely to be even more useful. Currently, we need to solve many PageRank
problems at values of α that are close to 1. These vectors take considerable
computation time. Gauss–Turán quadrature [Gautschi 04] uses derivatives in
a quadrature rule with a derivative substituting for another point. Computing
PageRank derivatives can be done at the same value of α, and thus switching
to this new quadrature rule seems a promising idea to speed the RAPr com-
putations. However, computing the Gauss–Turán rules themselves is far more
difficult than computing a Gaussian quadrature rule.

Second, an equivalent way to write the RAPr system with quadrature is to
solve

(IN ⊗ I − TN ⊗ P)x = (IN − TN )e1 ⊗ v

for a Jacobi matrix TN given by the Gaussian quadrature rule. This system
is a PageRank system with α replaced by the matrix TN . The vector x above
is also a permutation of the PageRank function applied to a matrix parameter.
That is, it is related to x(C), where C is a square matrix. (Again, PageRank is
a rational function, and the PageRank function of a matrix is well defined.) Ex-
amining PageRank as a function of a matrix might lead to other generalizations
of PageRank and some interesting connections with the derivative of PageRank
with respect to α.

Finally, our code is available for experimentation.2

2Available at http://stanford.edu/∼dgleich/publications/2009/rapr.
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11. Appendix A: Four-Parameter Beta Moments

In this appendix, we derive an algorithm to compute the moments of a four-
parameter Beta(a, b, [l, r]). To handle the general case, define

μ̂j ≡ μj(A), where A ∼ Beta(a, b, [0, 1]).

For A ∼ Beta(a, b, [l, r]),

E
[
Ak
]

=
∫ r

l

ζkρ
(l,r)
Beta(a,b)(ζ) dζ =

∫ 1

0

((r − l)τ + l)kρ
(0,1)
Beta(a,b)(τ) dτ

=
k∑

j=0

(
k

j

)
μ̂j(r − l)j lk−j ,

and we can compute the moments of A ∼ Beta(a, b, [l, r]) by scaling and shifting
those of A ∼ Beta(a, b, [0, 1]). Figure 7 gives an implementation of the recurrence

μk(A) = μ(0,k),

μ(i,j) =
j∑

m=i

(
j − i

m − i

)
μ̂m(r − l)m−ilj−m = (r − l)μ(i,j−1) + lμ(i+1,j),

to compute the moments μk(A).
The implementation follows from organizing the moments into a matrix⎡

⎢⎣
μ(0,0) μ(0,1) · · · μ(0,k)

μ(1,1) · · · μ(1,k)

. . .
...

μ(k,k)

⎤
⎥⎦

and filling in the entries μ(0,1), . . . , μ(0,k) from the initially specified diagonal. At
every step in the implementation, we compute a new diagonal.

12. Appendix B: Quadrature Convergence

We prove the following theorem.

Theorem 12.1. Let A be a random variable with a continuous density function sup-
ported in [0, r], where r < 1. The error in the Gauss quadrature approximation
of E [x(A)] is bounded above by∣∣∣E [xi(A)] − x

GQ(N)
i

∣∣∣ ≤ 32ωr

15(1 − ρ−2)ρ2N+2
,
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where N is the number of points in the Gauss quadrature rule,

ω =

√
1 +

1
r
,

and

ρ =
1
r

+

√
1
r2

− 1.

Proof. There are many statements for the error in Gauss quadrature, and we
begin with a modern statement from [Trefethen 08, Theorem 4.5]. Consider I =∫ 1

−1
f(x) dx for an analytic function f . Let IN be the N -point Gauss quadrature

approximation to I. Then

|I − IN | ≤ 64ω

15(1 − (ρa + ρb)−2)(ρa + ρb)2N+N
, (12.1)

where |f(z)| ≤ ω for all z in the ellipse with foci ±1 and semimajor axis ρa > 1
and semiminor axis ρb. Figure 13(a) illustrates the construction.

Note that we are approximating the integral

E [xi(A)] =
∫ r

0

xi(α) dα

with an N -point quadrature rule. Each PageRank component is a rational func-
tion with no poles in the interval of integration, which is a special case of an
analytic function. In the remainder of the proof, we go through the details of
applying the bound from (12.1) precisely. First, we transform the problem to
the integration region [−1, 1] by a change of variables α to z. In this z-space,
we build an ellipse in the complex plane where xi(z) is analytic. To study the
function magnitude ω, we transform the ellipse back to α-space and examine the
magnitude of PageRank as a function of α when α is complex.

Let
z =

2α

r
− 1 ⇐⇒ α =

r

2
(z + 1)

be the change of variables between α and z. Consider z = zR + iZi for z in the
ellipse with foci ±1. The ellipse satisfies

z2
R

ρ2
a

+
z2

I

ρ2
b

= 1,

and the constraint on the foci implies that ρ2
a = 1 + ρ2

b . Both ρa and ρb live in
z-space, so for

ρa =
1
r
,
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(a) The framework for Gauss
quadrature error analysis

(b) The Gauss quadrature error
analysis applied to PageRank

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

(c) PageRank magnitude for a
complex damping parameter

Figure 13. The ellipse of analyticity provides bounds on the error in a Gauss
quadrature rule. Roughly, |error| ≤ (ρa +ρB)2N . When integrating xi(α), we use
the ellipse given in (b) to bound the error in a Gauss quadrature approximation.
Note that xi(α) is clearly analytic in this region, since it is enclosed inside |α| < 1.
In this final plot, we show an upper bound on ‖x(α)‖ when α ∈ �. Darker gray
indicates larger magnitude, and white indicates a magnitude near zero. The
magnitudes increase as α veers off the real line, or when the real component is
negative.

we consider an ellipse in α-space with a right endpoint r/2+1/2, halfway between
r and 1.3 The function xi(α(z)) is analytic inside this ellipse. The right endpoint
(in α-space) is less than 1, and xi(α) is analytic for all complex α with |α| < 1.
See [Horn and Serra-Capizzano 07] for the first study of PageRank with complex
α. Thus,

ρa + ρb =
1
r

+

√
1
r2

− 1

slips into (12.1) for the PageRank case.
Now that we have ρa + ρb, let us find ω.
3This choice of ρa may not be optimal, but other choices increase the difficulty of the

computations considerably. In particular, we tried using a right endpoint of γr + (1 − γ), but
could compute only the upper bound ω when γ = 1/2.
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In α-space where α = αR + iαI , the ellipse is

(r/2 − αR)2

(1/2)2
+

α2
I

(1
2

√
1 − r2)2

= 1.

This ellipse is centered at r/2 with semimajor axis length 1/2, as illustrated in
Figure 13(b).

In (12.1), the value of ω is an upper bound on f(z) inside the ellipse. Thus,
we must bound the magnitude of PageRank components for a complex α. First,

x = αPx + (1 − α)v gives ‖x‖ ≤ |α| ‖x‖ + |1 − α|.

For complex α, this bound yields

|xi(α)| ≤ ‖x(α)‖ ≤ |1 − α|
1 − |α| =

√
(1 − αR)2 + α2

I

1 −√
α2

R + α2
I

≡ F (αR, αI).

When αI = 0, this bound respects the property that xi(α) ≤ 1 for 0 ≤ αR < 1.
When αI �= 0, the bound is considerably more interesting. In Figure 13(c), we
see that as αI increases, F increases. Analytically, we find that ∂F/∂αI > 0 for
αI > 0 and ∂F/∂αI < 0 for αI < 0. Consequently, the maximum ω is going to
occur on the boundary of the ellipse. In this case,

α2
I =

1
4
(1 − r2)

(
1 − (r/2 − αR)2

(1/2)2

)
.

Let FR(αR) = F (αR, αI(αR)) be the value of F on the ellipse. The critical
points of F are

αR =
r2 − 1

2r
,

r2 − 2r − 3
2r

,
r2 + 2r − 1

2r

with respective values at these points

FR(·) =

√
1 +

1
r
− r, −i

√
3
r
− 1,

√
1 +

1
r
.

Only

αR =
r2 + 2r − 1

2r

is inside the region of integration, and thus

ω =

√
1 +

1
r
.
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There is one more step:∣∣∣E [xi(A)] − x
GQ(N)
i

∣∣∣ ≤ ∣∣∣∣dα

dz

∣∣∣∣ ∣∣∣E [xi(z)] − x
GQ(N)
i

∣∣∣ .
The initial bound (12.1) now applies to the second expression with

ρa + ρb =
1
r

+

√
1
r2

− 1

and

ω =

√
1 +

1
r
.
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